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Abstract

Background: One of the greatest public health challenges in low- and middle-income countries (LMICs) is identify-
ing people over time and space. Recent years have seen an explosion of interest in developing electronic approaches
to addressing this problem, with mobile technology at the forefront of these efforts. We investigate the possibility of
biometrics as a simple, cost-efficient, and portable solution. Common biometrics approaches include fingerprinting,
iris scanning and facial recognition, but all are less than ideal due to complexity, infringement on privacy, cost, or port-
ability. Ear biometrics, however, proved to be a unique and viable solution.

Methods: We developed an identification algorithm then conducted a cross sectional study in which we photo-
graphed left and right ears from 25 consenting adults. We then conducted re-identification and statistical analyses to

identify the accuracy and replicability of our approach.

Results: Through principal component analysis, we found the curve of the ear helix to be the most reliable ana-
tomical structure and the basis for re-identification. Although an individual ear allowed for high re-identification rate
(88.3%), when both left and right ears were paired together, our rate of re-identification amidst the pool of potential

matches was 100%.

Conclusions: The results of this study have implications on future efforts towards building a biometrics solution for
patient identification in LMICs. We provide a conceptual platform for further investigation into the development of an

ear biometrics identification mobile application.

Background
One of the greatest public health challenges in low- and
middle-income countries (LMICs) is identifying peo-
ple over time and space, that is, identifying people at
repeated time points regardless of when or where. The
success of our major efforts, including chronic infec-
tious disease management, vaccination campaigns, and
longitudinal studies, hinges upon accurate identification
at point of initial care and then correct re-identification
from there on out.

Finding a simple and reliable system to identify and
track individuals in LMICs over time and space is one
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of the most pressing public health challenges of our day.
Recent years have seen an explosion of interest in devel-
oping electronic medical records (EMRs) and informa-
tion technology (IT) systems for hospitals and health care
centers in LMICs [1-6]. Yet electronic records offer no
benefit over paper records if one cannot accurately iden-
tify a given individual. With widespread mobile phone
ownership and access to network signal, mobile health
technology, or mHealth, is uniquely poised to address
this problem [7, 8].

It was with this challenge in mind that we began to
investigate the possibilities for a simple, cost-efficient,
and portable mHealth solution to subject identification.
Biometrics is a method of recognizing individuals via
unique physiological attributes [9], is an advancing field
for person identification, and has promise for application
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in mHealth. Biometrics is becoming an increasingly pop-
ular means for identification on an international level.
Large-scale international systems for purposes of immi-
gration, verifying identity, controlling restricted access
areas, and controlling restricted information are now
active in the United Kingdom (UK), Belgium and other
European Union countries [10]. India’s Aadhaar biomet-
ric ID programme is also worth noting, which has been
established with the goal of enrolling all adults into the
system to aid in the delivery of social welfare programs
[11]. However, these systems are prime examples of the
general trend of biometric application for person identi-
fication; they are large-scale, complex, multi-scalar, and
generally inappropriate as analogs for our settings of
interest.

We developed seven criteria that a chosen biometrics
system would have to meet in order to solve the challenge
of person identification in LMICs. First, it should operate
on one of the more commonly used smart phone operat-
ing systems, such as Android or the Apple iOS system.
Second, it must minimize data storage requirements on
the device itself: in settings where cellular data transfer
rates are slow and expensive, population data for subject
identification will need to be stored locally on the cell
phone itself. Third, it must be physically non-invasive and
culturally acceptable. Fourth, it must be secure so that
even if a phone was lost or stolen, subject confidential-
ity would not be compromised. Fifth, the system must be
able to perform both identification and verification, rec-
ognizing returning patients and enrolling new patients as
they enter into the system. Sixth, its design must be opti-
mized for use in children. Lastly, it must be ‘sufficiently’
accurate to consistently recognize individuals through
periods of rapid growth, such as the first year of a child’s
life.

Most existing biometric targets fail to meet one or
more of these criteria. We considered popular biomet-
rics approaches, including finger and palm-printing, iris
scanning, DNA testing, and facial recognition against
our criteria, but deemed all to have at least one critical
shortcoming. Iris scanning, for instance, requires a con-
sistent light source (typically with infrared wavelengths),
is comparatively expensive to other biometrics technolo-
gies, and requires that the subject keep their eye open
for a specified duration of time—a particular challenge
when dealing with small children who may be frightened
by the scanner [12-14]. Fingerprinting, which currently
takes up the largest proportion of biometrics applica-
tion, is susceptible to finger pad damage (of particular
concern among rural populations who partake in daily
manual labor). Perhaps most importantly, fingerprinting
recognition can carry a negative connotation with law
enforcement, and this stigma alone renders fingerprints
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unacceptable to many of the individuals that are most in
need [15, 16].

Ears met our criteria. First, the only technology
required is a camera and a consistent image capturing
process. Second, photos can be rendered into minimal
data points allowing for local storage on a phone. Third,
ears are easily accessible by non-invasive means and can
be photographed without frightening an infant or young
child. Fourth, ears are relatively impersonal features of
our anatomy that tend not to mark the memory of oth-
ers as distinguishing features, yet ears are sufficiently
variable between individuals to serve as an identifier and
are increasingly recognized as a viable biometric [16-27].
Lastly and most importantly, the ear is one of the most
stable anatomical structures throughout the lifespan,
already at approximately 75% of adult size at the time of
birth, with linear, and therefore predictable, growth [18,
28].

For these reasons we hypothesized that ears would be
an ideal biometric target for identification. To test this
hypothesis, we first developed a simplified algorithmic
system for extracting biometric measurements from pho-
tographs of individual’s ears. We explored various com-
binations of measurements, developing the algorithm
based on the structures both supported by the literature
and found to be consistently present yet sufficiently vari-
able among our subjects. Second, we conducted a cross
sectional study in which we photographed left and right
ears from twenty-five adults, and then used our algo-
rithm to extract the biometric measurements for each
of the fifty ears. For analysis, we conducted a series of
blinded re-identification experiments in which we used
the derived algorithmic data to re-identify the subjects,
using first data just from one ear, and subsequently data
from paired left and right ears. This paper discusses the
results of these investigations, providing proof of concept
to justify the sophistication and digitalization of this sim-
plified biometrics technique into a Smartphone applica-
tion for patient identification.

Methods

To demonstrate proof of concept, our investigation
evolved over two phases. First, using open-source pho-
tographs of ears, we evaluated a number of different
approaches to converting image data into numerical for-
mats algorithmically. The focus here was to both iden-
tify anatomical structures whose presence was relatively
consistent between individuals and to identify structures
that were convertible into numerical algorithmic rep-
resentations. The anatomical structures we included in
our investigation are highlighted in Fig. 1. The develop-
ment of our algorithmic measurement method was partly
derived from the literature on ear biometrics, but also
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Fig. 1 Anatomical ear structures used in algorithm development

guided empirically through trial and error of different
combinations of features and measurements [24, 26, 29].

Second, we conducted a two-step validation study
using images captured from human volunteers. The
objective was to first test our ability to convert image
data into numerical formats using the final algorithm
from step one. We then used those numerical data to
reconnect subjects to their identities. The algorithm vali-
dation study, approved by the Boston University Internal
Review Board, was conducted in December 2013. We
enrolled twenty-five adults from the Boston University
Medical Campus who provided written consent (see
Table 1). Photographs were taken of each individual’s left
and right ears, yielding a total of fifty images. Ears were
all photographed in the same interior lighting conditions
with the flash enabled. We took care to ensure consistent
alignment of the camera to the ear for the photograph,
but without a stabilizing structure there was some varia-
tion in the angle at which the photograph was taken.

For purposes of reducing error, left ear photographs
were digitally reversed so that the tragus was on the right
side of the photo and the outer edge of the ear was on
the left side of the photo. Three investigators indepen-
dently and systematically measured each ear to ascertain
the base measurements for computing the identification
algorithm. Lengths were measured in pixels with the pro-
gram GIMP 2.8.10 and angles were measured with the
program MB-Ruler 4.0 [30, 31]. As a result, the thirteen-
component algorithm was captured independently for
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Table 1 Demographic descriptions of ear study participants

Variables n=25
Sex, %
Male 9 (36%)
Female 16 (64%)
Age, years
Mean (SD) 40.2 (13.0)
Min—-max 23-68
Race, %
White (68%)
African American/Black 16%)

Asian/Pacific Islander

17

4(
Two or more 2 (8%)

T(
Other 1 (

each of the left and right ears three times. The average
for each algorithm measurement was computed. Stand-
ard deviations were calculated at the individual subject
level, measuring the variation between each investigator’s
value for each ear measurement, and also at the group
level, measuring the variation for each algorithm vari-
able across all subjects for each of the thirteen algo-
rithmic variables. The ideal result would be that for any
given algorithm variable for one specific ear, variation
between investigators’ measurements would be minimal
(i.e., standard deviation would be small), thus represent-
ing accuracy in the measurement process. Conversely, in
order for this approach to be useful in correctly identi-
fying an individual, we would hope to see considerable
variation for a given algorithm variable between different
subjects (i.e., larger standard deviations). The process of
algorithm development and data collection can be seen
in Fig. 2.

Once these calculations were made, we conducted
two blinded re-identification experiments. For the first,
left and right ears were treated as if from fifty different
individuals. The purpose of this was first, to increase the
sample size of our pool, and second, to test the sensitivity
of the method while presuming that left and right ears,
being genetically linked, would resemble one another.
Each member of our team individually used a computer-
ized random number generator to select forty of the fifty
ears and redistribute those into random order. The asso-
ciated forty average algorithms for each set of randomly
selected forty ears were then blinded so that each team
member was the only person who knew their true iden-
tity of the subjects in their set. We chose not to use all
fifty ears to prevent the reviewer of the data from match-
ing by process of elimination. We then swapped our lists
and each attempted to use our own algorithm measure-
ments to identify the correct match. That is, investigator
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Fig. 2 Process of algorithm development and data collection

A gave their randomly-ordered algorithms to investigator
B. Investigator B gave their randomly-ordered algorithms
to investigator C, and so on. Thus, we were testing not
only the ability to distinguish one individual from the
next, but also the ability to match an individual’s algo-
rithm measurements back to the averages.

The second re-identification experiment kept the left
and right ears of each individual together as a unique
pair. This experiment paralleled true application, as in
almost all circumstances both of an individual’s ears
would be available to aid in identification and theoreti-
cally increase accuracy. Each investigator used the com-
puterized random number generator to select twenty out
of the twenty-five pairs (again to prevent matching by
process of elimination) and redistribute them into ran-
dom order, and the blinding experiment was repeated in
the same fashion. The process of both re-identification
experiments is depicted in Fig. 3.

Our primary statistical analysis was to conduct a prin-
cipal component analysis (PCA) to determine the most
meaningful variables of the algorithm, that is, the vari-
ables lending to the greatest inter-subject variability.
Principal components are linear combinations of sets
of variables from the given dataset at optimal weights,
determined through the calculation of eigenvalues.
Eigenvalues are used to consolidate variance in a corre-
lation matrix, therefore the factor with the largest eigen-
value explains the most variance [32]. Therefore, because
principal components are calculated based on eigen-
values, the first principal component accounts for the
maximum amount of variance in the dataset, the second
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principal component accounts for remaining variance
not accounted by the first principal component, and each
successive principal component accounts for the dimin-
ishing remainder of variability still unaccounted for. A
proportion of each variable entered into the analysis is
described by each principal component. In the end, only
the most meaningful principal components are retained
[33]. PCA was conducted three times to parallel the
logic in the re-identification analysis: first, on the thir-
teen variables of the left ears alone; second, on the thir-
teen variables of the right ears alone; and third, on the
twenty-six combined left and right ear variables for each
of the twenty-five subjects. We determined the num-
ber of principal components to retain through Kaiser’s
eigenvalue-greater-than-one rule, which states that prin-
cipal components are retained only if their eigenvalue is
greater than 1.0, and Cattell’s scree plot method, which
is a process of examining the eigenvalues of the principal
components through a scree plot to identify where the
line breaks and levels off (also called the ‘elbow’) which
becomes the cut-off for inclusion [34, 35]. Additionally,
we applied an orthogonal rotation to the retained prin-
cipal components. We used SAS 9.3 software (SAS Insti-
tute, Cary NC) to conduct these analyses.

The study was approved by the ethical committee at
Boston Medical Center and all subjects provided signed
informed consent.

Results

The process of identifying which anatomical structures to
include in the algorithm highlighted the high variability
between individuals. For example, while one individual
may have a pronounced antitragus, another may have a
convex structure instead. Additionally, one individual
may have a distinct fold to the helix, while another may
have an ear that apparently does not fold over at all. Even
within a relatively small set of open-source ear images,
it became apparent that very few structures could be
depended upon from one person to the next and that
the chosen algorithm would need multiple approaches
in order to account for the likely absence of one or more
structures.

The structures we based our final algorithm on
included the helix, antihelix, tragus, antitragus, inter-
tragic incisure, and the ear lobule (Fig. 1). The primary
points of interest on each of these structures included
what we termed the ‘anchor point, or where the crux of
the helix meets the antihelix perpendicularly, the most
protruding point of the tragus and the antitragus, the
maximum height from top of the ear to bottom of lobule,
and the outer edge of the helix. The ‘anchor point’ proved
pivotal in this analysis as it was the only anatomical
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Fig. 3 Process of two re-identification experiments, first considering left and right ears as independent entities, and second, combining the paired
left and right ear algorithms for each subject to attempt to re-identify true identities

feature that could be dependably identified on one sub-
ject from the next, and therefore became the starting
point for the algorithm.

The final algorithm was divided into three sections. The
first, termed the ‘inner triangle; consisted of a triangle
beginning at the anchor point with the first edge running
tangentially across the tragus until it met the base of the
intertragic incisure, the second edge crossing tangentially
over the antitragus until it reached the antihelix, and the
third edge connecting back to the anchor point (Fig. 4).
The second section, termed the ‘outer triangle, was the
maximum height of the ear, from the top of the helix to
the base of the lobule (or in the case of attached earlobes,
where the lobule ended in conjunction with the head),
connected from both ends back to the anchor point. The

last section was termed the ‘curvature’ and was made up
of seven measurements taken at fifteen degree intervals
rooted at the anchor point and measured to the outside
of the helix, along with a base measure which ran from
the intertragic incisure, through the anchor point, and up
to the edge of the helix (or the end of C1) (Fig. 4).

In order to avoid the error introduced by variation in
image resolution and/or distance between the ear and the
camera at the point of image capture, we calculated ratios
instead of absolute values. The first section of the algo-
rithm was derived from the Inner Triangle, made up of
three ratios between each of the three angles of the Inner
Triangle. The second section was derived from the Outer
Triangle, and was made up by the three ratios between
each of the three triangle lengths. Although angles were

'

The Inner Triangle

Fig. 4 The three sections of the ear identification algorithm: The inner triangle, the outer triangle, and the curvature
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preferred due to their robustness against changes in photo
resolution, lengths were chosen for the outer triangle
because the number of possible locations for the ends of
the maximum height line led to more possible variance in
the resulting ratios by angles than from absolute lengths.
The final section of the algorithm was made up of seven
ratio variables derived from seven curvature measure-
ments at consecutive fifteen degree angles on the upper
ear (C1 through C7), using the base line as the denomi-
nator in each case (see Fig. 4). For an outline of the algo-
rithm ratio variables, see Table 2. Since our algorithm
used ratios of two measurements (e.g. 01:02), the abso-
lute size of the image did not matter since proportionality
was preserved. Rather, variability resulted from measure-
ment errors and from the angle at which the image was
taken. The former could be simply addressed by automat-
ing the process through programming. The latter problem
could be reduced or negated by creating a mechanical cra-
dle to hold the smartphone during image capture, effec-
tively standardizing the distance from the camera to the
subject’s head and the angle at which the image is taken.
To prove measurement accuracy between investiga-
tors, the standard deviations were calculated for each of
the three investigator’s measurements for each algorithm
variable and averaged across subjects. Accuracy would
have been demonstrated by small standard deviations
for each variable (Table 3). The mean standard deviation
across all thirteen algorithm variables was 0.034 (left s.d.:
0.032; right s.d.: 0.036). However, it was observed that
certain algorithm variables had markedly higher varia-
tion than others. The algorithm variables I2 and I3 of the
inner triangle had high variation and I1 and O1 of the
inner and outer triangles had moderately high variation.

Table 2 The ratio compositions of each algorithm variable,
organized by the inner, outer, and curvature sections

Section Variables Ratio
Inner triangle 11 AT:A2
12 AT:A3
13 A2:A3
Outer triangle 01 L1:L2
02 L1:L3
03 L2113
Curvature Cgl Cl:base
Cg2 C2:base
Ce3 C3:base
Ced C4:base
Cg5 C5:base
Cg6 Cébase
Cy7 C7:base

Page 6 of 12

Table 3 Mean standard deviations (SD) of investiga-
tors’ measurements for each algorithm variable for both
left and right ears to represent measurement accuracy,
with analysis of sensitivity based on different variable
combinations

Left ear algorithm Right ear algorithm

Variable N Mean SD  Variable N Mean SD

Gyl 25 0.006 (@ 25 0.008
Cg2 25 0.008 Cg2 25 0011
Gg3 25 0.005 Gs3 25 0.011
Cpd 25 0.006 Cet 25 0012
Gg5 25 0.007 G5 25 0.011
Cg6 25 0.006 Cr6 25 0.011
Cy7 25 0011 Cg7 25 0011
11 25 0.035 1 25 0.030
12 25 0.127 12 25 0.095
13 25 0.120 13 25 0.129
01 25 0.061 01 25 0.093
02 25 0.007 02 25 0.013
03 25 0.012 03 25 0.026
Mean 0.032 Mean 0.036

Overall mean

SD=0.034
Excluding I2and 13 Mean 0.015 Mean 0.022

Overall mean

SD=0.034
Excluding I1,12,13,  Mean 0.008 Mean 0.013

and O1

Overall mean

SD=0.010
Curvature only Mean 0.007 Mean 0011

(Ca1-Cs7)

Overall mean
SD = 0.009

For this reason, we calculated standard deviations thrice
more to analyze the sensitivity of the algorithm. First, we
excluded what we determined to be the high variation
variables (I2 and I3), and calculated the standard devia-
tion to be 0.018 (left s.d.: 0.015; right s.d.: 0.022). Second,
we additionally excluded the moderately high variation
variables (I1 and O1) and calculated the standard devia-
tion of the remaining nine variables to be 0.010 (left s.d.:
0.008; right s.d.: 0.013). Lastly, we calculated the stand-
ard deviation for only the seven curvature variables (Cy1
through C7), which was empirically observed to be the
most accurate section of the algorithm, to be 0.009 (left
s.d.: 0.007; right s.d.: 0.011). The variable with the overall
highest accuracy was Cy1, which was measured from the
‘anchor point’ to the top of the helix (Fig. 4), with a stand-
ard deviation of 0.007 (left s.d.: 0.006; right s.d.: 0.008).
The variable with the least accuracy was I3 of the inner
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Table 4 Mean standard deviations (SD) of each algorithm
variable across subjects for both left and right ears as a
representation of ear variability across subjects, with anal-
ysis of sensitivity based on different variable combina-
tions

Left ear algorithm Right ear algorithm

Variable N Mean SD Variable N Mean SD

Gyl 25 0.038 (@ 25 0.039
Cg2 25 0.050 Cg2 25 0.044
G3 25 0.064 Ge3 25 0.053
Cpé 25 0.066 Cpd 25 0.067
G5 25 0.071 G5 25 0.075
Cr6 25 0.063 Cr6 25 0.073
Cy7 25 0.054 Cy7 25 0.064
1 25 0.204 1 25 0.191
12 25 0.886 12 25 0418
13 25 1.205 13 25 0.888
01 25 0.353 01 25 0.248
02 25 0.073 02 25 0.069
03 25 0.080 03 25 0.073
Mean  0.247 Mean 0.177

Overall mean

SD=0212
Excluding 12and 3 Mean  0.102 Mean 0.091

Overall mean

SD =0.096
Excluding11,12,13, Mean  0.062 Mean 0.062

and O1

Overall mean

SD =0.062
Curvature only Mean  0.058 Mean 0.059

(CR1-Cy7)

Overall mean
SD = 0.059

triangle (Fig. 4), with a standard deviation of 0.124 (left
s.d.: 0.120; right s.d.: 0.129).

To test the effectiveness of differentiating one unique
individual from the next, standard deviations for each
average algorithm variable across subjects (that is, the
average between the three investigators’ measurements)
were calculated (see Table 4). The same algorithm vari-
ables that were deemed to have high inter-observer vari-
ation were found to have high inter-subject variation. We
concluded this was a result of the low accuracy in meas-
urement, and therefore we followed the same process of
excluding variables in a sensitivity analysis. Across all
twenty-five subjects, the average standard deviation for
the thirteen algorithm variables was 0.212 (left: 0.247;
right: 0.177). Excluding 12 and I3, the average standard
deviation for the eleven variables was 0.096 (left s.d.:
0.102; right s.d.: 0.091). Additionally excluding I1 and O1,
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the average standard deviation for the nine variables was
0.062 (left s.d.: 0.062; right s.d.: 0.062). Finally, the stand-
ard deviation across the average algorithm measures for
the seven curvature variables (Cyl through C;7) was
0.059 (left s.d.: 0.058; right s.d.: 0.059). The algorithm var-
iables with the greatest variation across subjects reflected
the variables with the least accuracy in measurement,
with the highest being I3. Similarly, the algorithm vari-
able with the least variation was Cy1, which was the vari-
able with the highest accuracy of measurement across
investigators. However, the standard deviation across
subjects was still over five-fold greater than the stand-
ard deviation between investigators, demonstrating its
capacity to contribute to identification.

Re-identification experiments were conducted to test
the function of the algorithm as whole to aid in distin-
guishing one individual from the next. For the first exper-
iment, left and right ears were treated independently
and each of the three investigators randomly selected
forty out of the fifty possible subjects. From this set of
120 potential matches, we were able to precisely iden-
tify 88.3% of the blinded data sets. It is worth noting that
almost all mismatches were the left or right counterpart
of the correct ear and that the correct ear was always
listed as a possible correct match by each investigator. If
considering the expanded range\ of possibilities, 100%
of the subjects were identified within a ranked list of the
top three most likely candidates. The second re-identifi-
cation experiment, where left and right ears were paired
together, and each investigator randomly selected twenty
out of the twenty-five possible subjects, we were able to
precisely identify 100% of the subjects in the blinded sets.
This was representative of the most likely scenario, as
both left and right ears would almost always be available
for analysis.

Finally, we conducted principal component analyses to
identify the most meaningful variables in the algorithm.
When considering only the left ears, we initially accepted
the first three principal components based on Kaiser’s rule
and Cattell’s scree plot method (Fig. 5a). Principal com-
ponent 1 explained 56.4% of the variance, principal com-
ponent 2 explained 20.7% of the variance, and principal
component 3 explained 10.9% of the variance for a total of
88.02% variance explained. However, in light of the find-
ings regarding measurement error in the inner triangle
most notably, we decided to retain only principal compo-
nent 1, as it explained over half of the variance and was
highly loaded by the curvature measures. The variables
with the highest loadings in principal component 1 were
included: C3, Cp4, and O3. The inner triangles measures
were highly loaded in principal components 2 and 3. The
factor pattern and loading values for the retained princi-
pal component of the left ear can be seen in Table 5.
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We conducted the same analysis for the right ear, ini-
tially accepting four principal components based on
Kaiser’s rule and Cattell’s scree plot method (Fig. 5b).
Principal component 1 of the right ears explained 51.1%
of the variance, principal component 2 explained 19.4% of
the variance, and principal component 3 explained 13.1%
of the variance for a total of 83.6% variance explained.
For the same reasons explained in the left ear PCA, only
principal components 1 and 2 were retained, as principal
components 3 and 4 were highly loaded by inner triangle
variables. The variables with the highest loadings in prin-
cipal component 1 were included: Cy3, Cp4, Ci5, Cy6,
and O2. The curvature measures not accounted for in
principal component 1 were loaded highest in principal
component 2, including: Cy1, Cz2, Cr7, Cy6, and O2. The
factor pattern and loading values for the retained compo-
nents of the right ear can be seen in Table 5. The bivariate
plot illustrating the correlation between principal com-
ponents 1 and 2 can be seen in Fig. 6.

For our final principal component analysis, we first
averaged the left and right algorithm variables into a
thirteen variable algorithm representing both ears for
each of the twenty-five individuals. This was to mirror
the logic behind the re-identification analyses, where
the underlying assumption was that in almost all sce-
narios, two ears would be available for the identifica-
tion of each individual. The same criteria (Cattell and
Kaiser) as for the previous analyses for selecting the
principal components to retain was repeated (Fig. 5c),
but for the same reasons in the left ear, only principal
component 1 was retained, as principal component 2
was highly loaded by inner triangle variables. Principal
component 1 accounted for 56.7% of the variability, and
was most heavily loaded by Cy3, Cr4 and Cy5. These
findings were consistent with the independent analy-
ses of the left and right ears. The loading values for the
retained principal component of both ears can be seen
in Table 5.

Discussion

The health care systems of low- and middle-income
countries are hampered by their inability to follow indi-
viduals consistently and accurately over time and space.
Consequently, each health care encounter acts in iso-
lation and longitudinally-focused global public health
efforts, whether preventive or therapeutic, fail to have
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Table 5 Principal component loadings for the three PCA analyses using orthogonal rotation
Left ear Right ear Both ears
Variable PC1 Variable PC1 PC2 Variable PC1
Ce3 098 C:3 094 —007 (3 097
(@ 0.95 Cpd 0.93 0.26 Ced 0.95
C3 093 Ca5 089 040 Ci5 091
Cg2 0.90 C6 0.84 0.50 03 0.89
G5 0.90 02 0.8